Getting the Bits Out: Fedora MirrorManager

Matt Domsch
Dell
Matt_Domsch@Dell.com

Abstract

Fedora is fortunate to have several hundred volunteer
mirror organizations globally. MirrorManager tracks all
of these mirror servers and automatically directs users
to a local, fast, current mirror. It has several unique
features, including registration of private mirrors and
designation of preferred mirrors by IP address—a great
benefit to corporations, ISPs, and their users; and au-
tomatic direction of Internet2 clients to Internet2 mir-
rors. This paper presents the web application architec-
ture that feeds updates to over 200,000 users each day.
It provides instructions for setting up local private Fe-
dora or EPEL mirrors for schools, companies, and or-
ganizations, and explains how you can volunteer to help
distribute Fedora worldwide.

1 Introduction

The Fedora Project (hereafter ‘Fedora’) is a leading-
edge Linux distribution that provides the newest and
best Free and Open Source Software to millions of users
worldwide. MirrorManager (MM) [9] is the tool devel-
oped to get that software out to those users accurately,
quickly, and inexpensively.

To assist with this distribution, Fedora is fortunate to
have several hundred volunteer mirror organizations
globally. These organizations provide manpower (re-
sponsive system administrators), servers, storage, and
copious bandwidth. Each mirror server carries a subset
of the content available on the Fedora master servers. It
is often fastest and least expensive for these mirrors to
serve users whom are “local” network-wise. MM tracks
all of these mirror servers and automatically directs
users to a local, fast, current mirror.

We present MM from three aspects. Section 3 shows
how end users download software transparently using
MM. Section 4 shows how mirror system administrators
interact with MM. Section 5 goes behind the scenes into
the design of the MM software itself.

2 Background

There are three factors to consider when scoping the size
of the distribution channel you need: number of users,
size of the software, and available network bandwidth.

By conservative estimates [7], Fedora has nearly 2 mil-
lion users worldwide. Neglecting the number of users
who buy or receive free CDs, at a minimum each user
downloads one CD worth of material (about 700MB).
This equates to at least 1.4 Exabytes of data to serve for
each release. With a single 45 Mbit/second T3 network
connection, it would take over 8 years to serve all this
content. Security and bugfix updates could easily double
this number. At this rate, Fedora releases occur every 6
months, we’d fall behind very quickly (not to mention
lose our entire user base!).

As for total disk space, Fedora keeps at least the current
release (at time of press, Fedora 9), the previous release
(Fedora 8), and the next previous release (Fedora 7) on-
line and available for download. Each Fedora version
release, including packages, CD and DVD images, and
daily security and bugfix updates, can consume up to
200GB of disk space. In addition, alpha and beta test
releases, and the “rawhide” tree (the development tree
for what will be the next major release), are posted reg-
ularly. These consume a bit less space than a full release.
Overall, about 1TB of space is constantly needed on the
master servers and for each full mirror.

While our mirror organizations are altruistic, they’re
also not overly wasteful. Each mirror may choose to
carry only a subset of the available content, such as
omitting lesser-used architectures and debug data. This
means it’s not sufficient to know which mirrors exist,
but we must also know which content each carries. This
precludes using a simple DNS round-robin redirector.

Further complicating matters, due to historical ways in
which the content was offered via rsync modules, each



mirror server may publish their tree of the Fedora con-
tent at paths of their choosing—often not matching that
of the master servers. This makes it even more impor-
tant that tools can discover the content a mirror carries,
and at which URLs that content is served—a naive redi-
rect would fail miserably.

Organizations have several reasons why they choose to
become a Fedora mirror. Generally, they have many Fe-
dora users locally, and for those users, it’s faster (and
for the organization, less expensive) if they can pull that
content from a local mirror rather than across the Inter-
net multiple times. For large Internet Service Providers
or organizations, the savings can be quite dramatic.

Organizations that are part of Internet2, or one of the
high speed research and educational networks that peer
with it, often have significantly lower costs and higher
bandwidth when passing traffic over Internet2 than over
their commercial links. Fedora itself does not have any
public download servers that are accessible via Inter-
net2, but more than half of the Fedora public mirror
servers are accessible via Internet2. By directing users
to local or Internet2-connected mirrors, they can get the
benefit of high speed downloads at a reduced cost.

2.1 Sidebar: Preventing Meltdown

One of the driving forces behind MM is to get the bits
to end users as fast as possible. A related goal is to
keep Fedora’s primary sponsor, Red Hat, online during
release week.

In October 2006, Fedora had around 100 active mirrors.
During the days leading up to a release, individual mir-
ror admins would report by email that they were synced.
However, the list of mirrors was managed manually, in-
cluded in release announcements manually, and gener-
ally quite error-prone (dozens of text files had to be up-
dated correctly, once for each mirror reporting ready).

When Fedora Core 6 was released that month, demand
was immense—over 300,000 installs in the first three
weeks—Ilarger than ever seen for a Red Hat Linux or
Fedora release. A few dozen mirrors were synced in
time for the release, but nowhere near sufficient capacity
to handle the demand. It didn’t help that the web page
most users were being directed to in order to begin their
download pointed them to use Red Hat’s own servers,
not mirror servers.

On top of this, an apparent Distributed Denial of Service
attack was mounted against Red Hat’s own servers on
release day. Talk about kicking you when you’re down.

The result: for the week following the Fedora Core 6
release, significant portions of Red Hat’s network be-
came unusable for anything other than responding to the
DDoS attack and serving Fedora content. You can imag-
ine the joy this brought to Red Hat executives. The mir-
rors were annoyed that they would finally get synced,
only to not be listed on the mirror list web pages (the
Fedora sysadmins were busy trying to handle the traf-
fic and keep everything running, and were slow getting
those manual lists updated). Chaos and confusion.

Thus MM was born, to address the shortcomings of
manually updating dozens of text files, and to ensure
all known mirrors were accounted for and being put to
good use.

Six months later, MM made its debut with the Fedora
7 release. Fortunately, there was no DDoS attack this
time, and while there were some growing pains get-
ting all the mirrors listed in the database, it went quite
smoothly.

In November 2007, Fedora 8 was released. With ev-
ery confidence in MM and the mirrors themselves, the
Red Hat servers were removed from public rotation—
Red Hat served bits to the mirrors, but served very few
end users directly. From Red Hat’s perspective, the re-
lease went so smoothly they didn’t even know it hap-
pened. Users were able to get their downloads quickly.
Life was good.

3 Getting the Bits: End Users

End users have several options for downloading Fedora
CDs, DVDs, and packages. Outside the scope of MM,
Fedora serves the content via BitTorrent. However, tools
such as yum do not use BitTorrent, and network restric-
tions by a user’s organization may prevent BitTorrent or
other peer-to-peer download methods.

Critical to the goal of delivering mirrored content to
users quickly is the redirector which automatically redi-
rects user download requests to an up-to-date, close mir-
ror, using several criteria:

e The user’s IP address is compared against a list of
network blocks as provided by each mirror server.



If a user is on a network served by a listed mir-
ror server, the user is directed to that network-local
mirror. This should be the fastest and least expen-
sive way to serve this user.

o If the user is on a network served by Internet2 or
its peers, they are redirected to another Internet2-
connected mirror in their same country, if avail-
able. MaxMind’s open source and zero-cost GeolP
database provides country information.

e Users are directed to mirrors in their same country,
if any.

e Users are directed to mirrors on their same conti-
nent, if any.

e Users are directed to one of the mirrors globally.

This search algorithm, while not always perfect, pro-
vides a pretty good approximation of the Internet topol-
ogy, and in practice has shown to provide acceptable
performance for users. In the event a user wants to man-
ually choose a mirror, he or she can look at the list of
available up-to-date mirrors [6].

To override this search algorithm in some way (e.g. be-
cause GeolP guesses the country incorrectly, or because
the actual network you’re on is near a border with an-
other country where there is a faster mirror), users may
append flags to the URLs used ([3] or [5]). Table 1 de-
scribes the available flags.

4 Hosting the Bits: Mirrors

MM offers several features aimed specifically to assist
mirror server administrators most efficiently serve their
local users, as well as global users, such as:

e The ability to have “private” mirrors—those which
serve only local users and which are not open to the
general public.

e The ability to specify the network blocks of their
organization. Local users from that organization
will be automatically directed to their local mirror.

o The ability to specify the specific countries a mirror
should serve.

e The ability to preferentially serve users on In-
ternet2 and related research and educational net-
works.

These features help help keep down bandwidth costs for
serving Fedora users.

4.1 Signing Up

These are the steps involved with registering as a Fedora
mirror, either to serve the public, or to serve your own
organization.

1. Create yourself a Fedora Account System ac-
count [2]. You should have one account per per-
son in your organization who will maintain your
mirror. You will be able to list these people as ad-
ministrators for your mirror site.

2. Log into the MM web administration inter-
face [10].

3. Create a new Site. Sites are the administrative con-
tainer, and where your organization can get spon-
sorship credit for running a public mirror. Pub-
lic mirrors are listed on a fedoraproject.org
web page with a link to each sponsoring organiza-
tion.

4. Create a new Host. Hosts are the individual ma-
chines, managed under the same Site, which serve
content. Sites may have unlimited numbers of
Hosts.

5. Add Categories of content for each Host. Most
mirrors carry the “Fedora Linux” category (cur-
rent releases and updates), while some also carry
the “Fedora EPEL” (Extra Packages for Enter-
prise Linux) [1], “Fedora Web” (web site), and
“Fedora Secondary Arches” (seconardary architec-
tures such as ia64 and sparc) categories.

6. Add your URLs for each Category. Most mirrors
serve content via HTTP and FTP; some also serve
via rsync.

In addition, you can set various bits about your Site and
Host, including its country, whether it’s connected via
Internet2 or its peers, whether it’s private or public, your
local network blocks, etc.



Table 1: mirrorlist flags

Flag Description

country=us, ca, jp

Return the list of mirrors for the specified countries.

country=global

Return the global list of mirrors instead of a country-specific list.

ip=18.0.0.1

Specify an IP address rather than the one the server believes you are connecting from.

Private Sites or Hosts are those which expect to only
serve content to their local organization. As such, they
will not appear on the public-list web pages. Hosts de-
fault to being “public” unless marked “private” on either
the Site (which affects all Hosts), or individually on the
Hosts’s configuration page. Private Hosts are ideal for
universities who have one mirror for internal users, and
another they share with the world. Private hosts are re-
turned to download requests based on matching client
IP to a Host’s netblock.

Netblocks are a feature unique to MM. You may specify
all of the IPv4 and IPv6 network blocks, in CIDR for-
mat, that your mirror should preferentially serve. Users
whose IP addresses fall within one of your netblocks
will be directed to your mirror first. There is one secu-
rity concern, as this could allow a malicious mirror to
direct specific users to them. However, as all content
served by the mirror system as a whole is GPG-signed
by the Fedora signing keys, to be successful the attacker
would have to convince the target user to accept their
GPG keys as well, which, one hopes, would be unlikely.
Mirrors may not set overly large netblocks without MM
administrator assistance, further limiting the scope of
such possible attack.

Internet2 detection is done by regularly downloading
and examining BGP RIB files from the Internet2 log
archive server. This data includes all the CIDR blocks
visible on Internet2 and its peer research and educa-
tional networks worldwide. Clients determined to be
on Internet2 will be preferentially directed to a mirror
on Internet2 in their same country, if possible. By set-
ting the Internet2 checkbox for the Host, your Host will
be included in that preferential list. In addition, private
Hosts on Internet2 may be happy to serve clients on In-
ternet2, even if they don’t fall within the Host’s list of
netblocks. MM provides this option as well.

Each Host should list the IP addresses from which they
download content from the master servers. These ad-
dresses are entered into the rsync Access Control List

on the master servers, as well as on the Tier 1 mirrors.
This is used to limit the users who may download con-
tent from the master mirror servers, so as to not overload
them.

4.2 Syncing

Fedora employs a multi-tier system [4] to speed deploy-
ments, similar to other Linux distributions. Tier 1 mir-
rors pull from the Fedora master servers directly, Tier 2
mirrors pull from the Tier 1 servers. Private mirrors pull
from one of the Tier 1 or 2 mirrors.

Unique to MM, the tool report_mirror is run on
each mirror server immediately after each rsync run
completes. This tool informs the MM database about
the full directory listing of content carried by that mir-
ror. The MM database for each Site contains a pass-
word field, used by report_mirror to authenticate
this upload, so as to not expose an individual user’s Fe-
dora Account System username and password.

5 Architecture

The MM software follows a traditional 3-tier architec-
ture of database back-end, application server, and front-
end web services. It is written in python, and leverages
the TurboGears rapid application development environ-
ment. However, some specific design decisions were
made to address the memory consumption and multi-
threaded locking challenges that python imposes. We
split the most often hit web services out from the appli-
cation server, exactly to address the memory demands.

5.1 Application Server and Database

MM uses TurboGears [13], with the SQLObject [12]
object-relational mapper layer for most data, and the
SQLAIchemy [11] mapper for integration with the Fe-
dora Account System. The application server provides
several entry points:



e The administrative web interface [10], where mir-
ror administrators register their mirrors and can see
the perceived status.

o A limited XMLRPC interface used by the
report_mirror script, run on the mirror
servers, to “check in” with the database.

e A web crawler, which detects which mirrors are
up-to-date. In conjunction with the report_
mirror script, this follows the “trust, but verify”
philosophy. Mirrors which are unreachable, even
temporarily, are removed from the redirector lists.

The database itself can be anything that SQLObject can
speak to, including PostgreSQL and MySQL. SQLOb-
ject takes care of creating the proper tables and mapping
rows into objects. For speed and memory efficiency,
some queries are implemented in SQL directly.

5.2 Crawler

The second half of the “trust, but verify” philosophy is
the web crawler. This application first updates its record
of content found on the master servers. For each pub-
lic Host, it then scans, using lightweight HI'TP HEAD
or FTP DIR requests (depending on protocols served by
that Host), each file that Host is expected to contain. For
large directories full of RPM files, only the most recent
10 files are scanned to cut down on extra unnecessary
lookups. Directories where all the files match the master
servers are marked up-to-date in the database; unreach-
able servers or those whose content does not match are
marked as not up-to-date, effectively preventing clients
from being directed to those Hosts’ directories. The
crawler can run against several Hosts at once, limited
only be available memory on the crawling system.

The crawler extends python’s httplib to use HTTP
keep-alives. This lets it scan about 100 files per server
per TCP connection using HTTP HEAD calls which do
not download the actual file data, and thus are very fast.

5.3 Web Services
5.3.1

Mirrorlist Redirector

To the end user, the most critical service MM provides
is the mirrorlist redirector [5], which directs users to a

mirror for the content they request. This service receives
all the requests generated by yum looking for package
updates, and individuals downloading CD and DVD im-
ages from the front page of fedoraproject.org.
These services operate on a cache of the database, con-
taining pre-computed answers to most queries, for max-
imum speed.

As this application gets hundreds of hits each sec-
ond, a pure mod_python solution was infeasible—
it simply wasn’t fast enough, and the memory con-
sumption (upwards of 30MB per httpd process waiting
to service a client) overwhelmed the servers. So, we
split the application into two parts: a mod_python
mirrorlist_client app, which marshalls the re-
quest and performs basic error checking and HTTP
redirection, and a mirrorlist_server app, which
holds the cache and computes the results for each client
request. mirrorlist_server fork ()s itself on
each client connection, keeping the cache read-only (so
copy-on-write is never invoked), which eliminates the
memory consumption problems and python interpreter
startup times. The two communicate over a standard
Unix socket. Client requests are answered in about 0.3
seconds on average.

This pair of applications is then replicated on several
web servers, distributed globally. This reduces the like-
lihood of a single server or even data center failure
bringing down the service as a whole. In the event of
application server or database layer failure, the web ser-
vices can operate on the cached data indefinitely, until
the back ends can be made available again.

5.3.2 Publiclist pages

Aside from the redirector, the second user-visible aspect
of MM are the “publiclist pages,” web pages that list
each up-to-date available public mirror and its proper-
ties, including country, sponsoring organization, band-
width, and URLs to content. These pages are ren-
dered once per hour into static HTML pages and served
via HTTP reverse proxy servers, again to make use of
caching. This keeps the traffic load manageable, even
on very active major release days.

6 Future Work

There are several features MM does not currently pro-
vide which would be useful additions.



e MM lists each mirror’s available bandwidth, but
does not use this information when choosing which
mirrors to return in what order. This causes both
relatively fast and slow mirrors in the same country
to be returned with equal probability. MM should
take into account a given Host’s available band-
width, and return a list of mirrors probabilistically
favoring the faster mirrors.

e report_mirror does not work from behind a
HTTP proxy server. Private mirrors need to run this
tool, but are often stuck behind such a proxy. This
is actually a shortcoming of python’s ur11lib.

e Metalink [8] downloads, which would let users pull
data from several mirrors in parallel. This is some-
what controversial, as it increases the load on the
mirrors (they wind up serving more random read
requests, which are much slower than streaming
reads). But it might let metalink-aware download
tools do a better job of choosing a “close” mirror
than MM does.

7 Conclusion

MM has been very effective in getting Fedora content to
users quickly and easily. Furthermore, it has decreased
the bandwidth burden of Fedora’s primary sponsor, Red
Hat, by making good use of the contributions from hun-
dreds of volunteer mirror organizations worldwide. Its
architecture allows it to serve millions of users, and to
scale as demand grows. It’s simple and fast for users,
and saves money for mirror organizations—a win all
around.

8 Acknowledgments

MM is primarily developed for the Fedora Project on
behalf of the author and his employer, Dell, Inc. It is
licensed under the MIT/X11 license.

MM includes GeoLite data created by MaxMind, avail-
able from http://www.maxmind.com/.

The Fedora Project is grateful to the hundreds of mirror
server administrators and their organizations who help
distribute Free and Open Source software globally.

9 About the Author

Matt Domsch is a Technology Strategist in Dell’s Office
of the CTO. He has served on the Fedora Project Board
and as the Fedora Mirror Wrangler since 2006.

References

[1] Extra Packages for Enterprise Linux. http:
//fedoraproject.org/wiki/EPEL.

[2] Fedora Account System. https://admin.
fedoraproject.org/accounts.

[3] Fedora download site.
http://download. fedoraproject.org.

[4] Fedora mirror tiering.
http://fedoraproject.org/wiki/
Infrastructure/Mirroring/Tiering.

[5] Fedora mirrorlist used by yum.
http://mirrors.fedoraproject.org/
mirrorlist.

[6] Fedora Project public mirror servers.
http://mirrors.fedoraproject.orgq.

[7] Fedora Project statistics. http://
fedoraproject.org/wiki/Statistics.

[8] Metalink. http://www.metalinker.org.

[9] MirrorManager. http:
//fedorahosted.org/mirrormanager.

[10] MirrorManager administrative interface.
https://admin.fedoraproject.org/
mirrormanager/.

[11] SQLAIchemy. http://sglalchemy.org.
[12] SQLObject. http://sglobject.org.

[13] TurboGears. http://turbogears.org.



