
A Model for Sustainable Student Involvement in Community Open
Source

Chris Tyler
Seneca College

chris.tyler@senecac.on.ca

Abstract

A healthy community is the lifeblood of any open source
project. Many open source contributors first get in-
volved while they are students, but this is almost always
on their own time. At Seneca College we have devel-
oped an approach to sustainably involving students in
open source communities that has proven successful in
a course setting.

This paper outlines Seneca’s approach and discusses the
results that have been obtained with it. I will examine
the key factors for successful student integration into
open source communities and steps that educational in-
stitutions and open source projects can each take to im-
prove student involvement.

1 The Challenge

To effectively teach Open Source, it’s necessary to move
each student into the role of contributor. At first blush
this appears straightforward, but it ultimately proves to
be an enormous challenge because Open Source is as
much a social movement as a technical one and because
many Open Source practices are the exact opposite of
traditional development practices.

1.1 Barriers to Teaching Open Source Develop-
ment

Many attempts to involve students in Open Source
within a course have failed because everyone is over-
whelmed:

• The students, because they’re suddenly facing an
established codebase several orders of magnitude
larger than any they have previously encountered in

their courses, a community culture that they do not
understand, and principles and ideals which are the
opposite of what they’ve learned in other courses—
for example, that answers and solutions should not
be openly shared on the web [15], that building on
other’s work by pasting it into your own is academ-
ically dishonest, and that it’s wrong to deeply col-
laborate with peers on individual projects.

• The professor and institution, because they’re deal-
ing with a continuously-changing, amorphous en-
vironment.

• The Open Source project, because it is very diffi-
cult to deal with a sudden influx of students who
tie up other contributors’ time with questions and
yet are unlikely to become long-term participants.

1.2 Distinctive Qualities of Open Source Develop-
ment

In order to develop an effective approach to Open
Source development, it’s important to understand the
qualities which make it unique:

• Open Source development is based around commu-
nities. These are generally much larger and more
geographically diverse than closed-source develop-
ment teams, and they are enabled and empowered
by the web, leading to an increased focus on com-
munication tools and internationalization and lo-
calization issues. Social issues become significant,
and there is a productive tension between the need
to maintain group discipline for coherence and the
possibility of provoking a fork. Often, the culture
of the community is not the culture of any particu-
lar member, but a synthetic intermediate culture.

• The codebases managed by the larger communi-
ties range up to millions of lines in size and can

1



date back many years or even decades. Further-
more, they often use tools and languages that are
different from those taught in post secondary in-
stitutions, or employ common languages in unex-
pected ways—for example, using custom APIs that
dwarf the language in which they are written (such
as Mozilla’s XPCOM and NSPR). These code-
bases require specialized, heavy-duty tools such as
bug tracking systems, code search tools, version
control systems, automated (and sometimes multi-
platform) build and test farms and related water-
fall and alert systems, toolchains for compiling and
packaging each of the source languages used in
the project, and release and distribution systems.
Smaller Open Source projects which do not main-
tain their own infrastructure use some subset of
these tools through a SourceForge account [20], fe-
dorahosted.org Trac instance [8], or other mecha-
nism.

• Most Open Source systems have an organic archi-
tecture. Since it’s impossible to anticipate the even-
tual interests and use-cases of the community—
including downstream needs—at the inception of a
project, the project requirements and development
direction change over time and the project grows
into its final form (I’ve never seen UML for an
Open Source project!). Although the lack of top-
down design can be a disadvantage, the flexible,
modular, and extensible architecture that often re-
sults has many benefits.

1.3 Turning Challenges into Strengths

Each of these distinctive qualities presents a challenge to
a traditional lecture-and-assignment or lecture-and-lab
format course, but can be a strength in a community-
immersed, project-oriented course. Carefully applied,
these strengths can be used to overcome the barriers
identified above.

2 Preparing to Teach Open Source

2.1 Select a Faculty Member

A prerequisite for teaching Open Source effectively is
a professor who has one foot firmly planted in the
Open Source community and the other in the educa-
tional world. In order to turn students into contributors,

you need a dedicated conduit and liaison who can intro-
duce students to the right people within the Open Source
community.

On the academic side, the professor needs to connect
with students on a personal level and to be aware of
and able to navigate within the learning and adminis-
trative context of the educational institution. On the
Open Source side, the professor must have deep contacts
(and friendships!) within the community, understand the
community culture, and know what matters to the com-
munity so that projects selected for the students have
traction. She must also know and effectively use the
community’s tools—for example, knowing when to use
IRC (Internet Relay Chat), when to use Bugzilla, and
when to use e-mail to communicate. The faculty mem-
ber must have bought-in to Open Source principles, and
use the community’s products in a production environ-
ment (“eating your own dogfood”)—there’s no credibil-
ity to lecturing about bugzilla.mozilla.org using Safari,
or presenting PowerPoint slides about OpenOffice.org.

The massive size of most large Open Source codebases
prevent any one person from effectively knowing the en-
tire codebase in detail, a problem that is compounded
when multiple languages, layers, or major components
are involved. This leads to the need to be produc-
tively lost in the code—moving beyond being over-
whelmed and becoming effective at searching, navigat-
ing, and reading code. The professor must demonstrate
how to cope in this state instead of pretending to know
each line, and this includes pulling back the curtain
and showing the students how she uses community re-
sources and contacts to find answers to questions. There
is no textbook for this; it is behavior that must be mod-
eled.

2.2 Select an Open Source Community

An effective Open Source course also requires the sup-
port of a large Open Source project. This selection of
project is usually informed by the involvements of the
faculty member(s) who will be teaching the course.

The Open Source community selected must have a suf-
ficiently large scope to provide opportunities for many
different types and levels of involvement. Its products
must also have many angles and components, so stu-
dents can innovate in corners that aren’t being touched
by the mainline developers. This likely narrows the list

2



of potential candidates down to the top one hundred
or so Open Source projects, which includes the major
desktop applications, graphical desktop environments,
key server applications, kernels, and community-based
Linux distributions.

The reasons for selecting a larger community are
straightforward:

• A large community can absorb a large number of
students spread across the various components and
sub-projects within the community. This enables
students with a broad range of interests and skills
to get involved in a way that interests them, using
the Open Source model of having people work on
things they are passionate about. It also spreads
the student contact across the community so that
few developers will have direct contact with more
than one or two students, preventing overload of
the existing contributors. At the same time, work-
ing within a single community provides a level of
coherence that makes it much easier to hold class
discussions and plan labs and lectures than if the
students’ involvement was spread across a number
of smaller, independent Open Source communities.

• The project’s infrastructure has usually been scaled
up to the point where it will readily support the ex-
tra contributors.

• Large projects tend to have broad industry sup-
port, opening up possibilities for spin-off research
projects and broadening the value of the students’
experience.

To make this work, you will need the support of the
community; they must buy into the idea of teach-
ing students to become productive contributors—not a
hard sell, because most communities are hungry for
contributors—and there must be open lines of commu-
nication with the community’s leaders.

It is counter-intuitive to select a large community be-
cause it seems easier to manage the students’ involve-
ment in a smaller project—but the key is to select some-
thing so big that the professor cannot directly manage
the students and they are forced to interact with the com-
munity in order to succeed.

2.3 Select Potential Student Projects

Open Source communities know what is interesting and
valuable within their own space and are in the best po-
sition to suggest potential student projects. They’re not
always able to verbalize these projects, so the professor
may need to poke and prod to shake out good ideas, but
the community will recognize the value of ideas as they
are proposed.

Some of the best project ideas as ones that existing com-
munity members would like to pursue, but can’t due to a
lack of available time (or in some cases, a lack of appro-
priate hardware). These issues should not be blocker
bugs or critical issues that will directly affect release
timelines or major community goals, but they may be
of significant strategic value to the community. Each
person proposing a project idea should be willing to be
a resource contact for that project.

Potential projects can include a wide range of activi-
ties: feature development, bug fixing, performing test-
ing, writing test cases, benchmarking, documenting,
packaging, and developing or enhancing infrastructure
tools.

The projects must then be screened for viability within
the course context:

• Are they the right size for the course? This does
not mean that the project should be fully completed
during the course; we’ve taken an idea from Open
Source—the “dot release”—to replace the idea of
“complete work,” and we look for projects that are
not likely to be completed but which can be devel-
oped to a usable state in three months.

• Are the necessary hardware and software resources
available?

• Is the level of expertise required appropriate for the
type of student who will be taking the course? Ide-
ally, each project should make the student reach
high, but be neither stratospherically difficult nor
trivially easy.

2.4 Prepare the Infrastructure

Each Open Source community has its own set of tools,
and it’s crucial that students use those native tools so that

3



community members can share with, guide, and encour-
age the new contributors. The existing community mail-
ing lists, wikis, IRC channels, version control systems,
and build infrastructure should be used by the students
as they would by any other contributor.

Most academic institutions have their own computing
and communications infrastructure, including tools such
as Moodle, Blackboard, version control systems, instant
messaging systems, forums and bulletin boards, and so
forth. It’s tempting to use these resources because they
are familiar and to avoid placing a burden on the com-
munity’s resources, but doing so draws a fatal line be-
tween the students and the rest of the community. Stu-
dents can learn to use any tools, but the community will
continue to use the tools they have established; when the
students meet them there, as fellow contributors, great
interaction takes place.

However, there’s a certain amount of additional infras-
tructure needed to support an Open Source course, in-
cluding:

• A course wiki for schedules, learning materials,
labs, project status information, and student de-
tails. If this wiki is compatible with the commu-
nity’s wiki (using the same software and similar
navigation), it will be easier for the community to
contribute to learning materials.

• An IRC channel set up in parallel to the commu-
nity’s developer channel(s), on the same network
or server. We have established #seneca channels
on irc.freenode.net and irc.mozilla.org, for exam-
ple; these provide a safe place for students to ask
the sorts of questions which may provoke intense
flaming in developer channels.

• A blog planet to aggregate the student’s blog post-
ings so that all community members, including the
students themselves, can easily stay up-to-date on
what all of the students are doing. This should
be separate from the community’s main planet be-
cause some of the material will be course-specific.
(It’s a good idea for the professor to feed the com-
munity planet to keep the community up-to-date
with what the students are doing.)

• Server farms and/or development workstations (as
appropriate to the projects undertaken), to ensure
that the students have access to all relevant hard-
ware and operating system platforms.

3 Teaching the Course

We start our Open Source courses by briefly teaching the
students the history and philosophy of Open Source. We
do this using classic resources such as The Cathedral
and the Bazaar [24] and the film Revolution OS [23],
but we don’t spend a lot of time on this topic because
the philosophy will be explained and modeled in every
aspect of the course.

3.1 Communication

Since Open Source is by its very nature open, we get stu-
dents communicating immediately so that they get used
to working in the open. They are required to establish
a blog (on their own website, or on any of the blogging
services such as blogger.com or livejournal) and sub-
mit a feed to the course planet. Almost all work is sub-
mitted by blogging, and students are expected to enter
comments and to blog counterpoints to their colleagues’
postings.

All course materials and labs are placed on the course
wiki, and both students and community members are
encouraged to expand, correct, and improve the mate-
rial. These resources and the knowledge they represent
grow over time and are not discarded at the end of each
semester. This body of knowledge eventually becomes
valuable to the entire community. Students are also re-
quired to get onto IRC. Since the main developers’ chan-
nels can be daunting to use, students are initially en-
couraged to lurk in those channels while communicat-
ing with classmates and faculty on the student channel.
The parallel channel enables students (and faculty) to
provide commentary on #developers chatter in real time
without annoying the developers, and it provides an ap-
propriate context for course-related discussion. Since
the student channel is on the same network/server as the
developers’ channels, some existing community devel-
opers will join the student channel.

3.2 Project Selection

At the very start of the course, students begin review-
ing the potential project list, and are required to select
a project by the third week. As part of the selection
process, students will often use IRC or e-mail to con-
tact the community member who proposed a project that

4



they are interested in. This is the first direct contact be-
tween the student and a community member, and since
the student is expressing interest in something that the
member proposed, the contact is usually welcome. It is
critical that students choose projects that are important
to the community and attract community support, so we
prohibit them from proposing their own projects. Stu-
dents do find it intimidating to select from the potential
project list, since the things that matter to the commu-
nity are big, hard, and mysterious (or at least appear that
way). The professor will often need to serve as a guide
during project selection.

We strongly prefer that each student select an individ-
ual project, with some rare two-person groups where
warranted by the project scope; larger groups are al-
most always less successful. Students need to collab-
orate in the community—both inside the class commu-
nity and within the larger Open Source community—
instead of doing traditional, inward-focused academic
group work. Students claim a specific project from the
potential project list by moving it to the active project
list and creating a project page within the course wiki.

3.3 Learning How to Build

Each community has a unique build process. This is
often the first non-trivial, cross-platform build that stu-
dents have encountered, so it’s a significant learning ex-
perience, and one that has a gratifying built-in reward.
There’s a lot of easy experimentation available here, so
students often go to great lengths testing different build
options and approaches (discovering, for example, that
a particular build takes 8 or more hours on an Windows
XP system, but only about 40 minutes on a Linux VM
under that same XP system). The students also learn
how to run multiple versions of the software for produc-
tion and test purposes.

One of the challenges with building is finding an appro-
priate place to build, since many of the laptop computer
models favored by students may have low CPU “horse-
power” or memory, while student accounts on lab sys-
tems may not have sufficient disk space or student stor-
age may be shared over a congested institutional net-
work. Possible solutions include using external flash or
disk drives with lab systems, or providing remote access
to build systems.

3.4 Tools and Methodologies

As the students start work on their project, the course
topics and labs teach the tools and methodologies used
within the community. In most cases, the bug or issue
tracking system (such as Bugzilla) drives the develop-
ment, feature request, debugging, and review processes,
providing an effective starting point. It’s best that stu-
dent projects have a bug/issue within the community
tracking system, so students must either take on an ex-
isting bug or create a bug/issue for each project.

One useful exercise at this stage is to have the students
“shadow” an active developer; on Bugzilla, a student
can do this by entering that developer’s e-mail address in
their watch list [4], which forwards to the student a copy
of all bugmail sent to the developer. After coming to
grips with the e-mail volume, students learn a lot about
the lifecycle of a bug through this process.

Next, the students need to learn how to cope with be-
ing productively lost by using code search tools (such as
LXR [9], MXR [10], and OpenGrok [11]), learning to
skim code, and most importantly, learning who to talk
to about specific pieces of code, including module and
package owners and community experts. By working
shoulder-to-shoulder with community members, partic-
ularly on IRC, they learn the ins-and-outs of the de-
velopment process, including productivity shortcuts and
best practices. The professor can keep his finger on the
pulse of the activity through IRC, guiding students when
they get off track and connecting them with appropriate
community members as challenges arise.

As with all of the activity in the course, students are
expected to blog about their experiences on a regular
basis, and all of the students benefit from this shared
knowledge (as does the community, which does not have
to answer the same questions over and over again). At
the same time, differences between the student projects
prevents one student from riding entirely on the coattails
of other students.

3.5 Meeting the Community

Guest lectures by community developers have an enor-
mously powerful impact on students: meeting a coding
legend on IRC is great, but talking to him face-to-face
and seeing a demonstration of how he works or hearing

5



first-hand about the direction the software is headed has
exceptional value.

We film these meetings and share the talks under
open content licenses, making them available to people
around the world. We’ve been surprised at the number
of views these videos have received, and who is viewing
them: for example, we’ve found that new Mozilla em-
ployees often read our wiki and view the videos of our
Mozilla developer talks as they come up to speed on the
Mozilla codebase.

3.6 Releases

Following the “release early, release often” mantra, stu-
dents are required to make releases on a predetermined
schedule: for the first Open Source course, three re-
leases from 0.1 to 0.3 are required, and for the follow-on
course, six biweekly releases from 0.4 to 1.0.

We define the 0.3 release as “usable, even if not pol-
ished,” reflecting the fact that a lot of Open Source soft-
ware is used in production even before it reaches a 1.0
state. This means that the 0.3 release should be prop-
erly packaged, stable, and have basic documentation,
although it may be missing features, UI elegance, and
comprehensive user documentation. The slower release
rate in the first course is due to the initial learning curve
and the fact that setting up a project and preparing an
initial solution are time-consuming.

3.7 Contribution to Other Projects

As active members of an Open Source community, stu-
dents are required to contribute to other Open Source
projects, either those of other students or other mem-
bers within the community. This contribution—which
can take the form of code, test results, test cases, doc-
umentation, artwork, sample data files, or anything else
useful to the project—accounts for a significant portion
of the student’s mark. Each project is expected to ac-
knowledge external contributions on their wiki project
page, and to welcome and actively solicit contributions
from other students and community members. This in
turn requires that they make contribution easy, by pro-
ducing quality code, making it available in convenient
forms, and by explicitly blogging about what kind of
contributions would be appreciated.

Students are often surprised to find community members
contributing to their projects (and community members
are sometimes unsure whether doing so is permissible
from an academic point of view), but that is part of the
authentic Open Source experience; it’s important not to
choke off collaboration for the sake of traditional aca-
demics.

In order to receive credit for contribution, students must
blog about their contributions to other projects. At first
this seems immodest to students, but the straight-facts
reporting of work accomplished is a normal part of open
development.

4 Seneca’s Experience

4.1 History

Seneca College has been involved with Open Source for
over 15 years, starting with Yggdrasil Linux installa-
tions in 1992. In 1999 we started a one-year intensive
Linux system administration graduate program; in 2001
we introduced the Matrix server cluster and desktop in-
stallation, converting all of hundreds of lab systems to a
dual-boot configuration, which enabled us to teach the
Linux platform and GNU development toolchain to stu-
dents right from their first day at the college. In addition,
a number of college faculty members released small
Open Source software packages, including Nled [25],
VNC# [22], and EZED [21].

In 2002, John Selmys started the annual Seneca Free
Software and Open Source Symposium [17], which has
since has grown to a two-day event attracting partici-
pants from across North America.

In 2005, an industry-sponsored research project on ad-
vanced input devices created the need to modify a com-
plex application. The lead researcher on this project,
David Humphrey, contacted Mozilla to discuss the pos-
sibility of modifying Firefox. This contact led to a deep
relationship between Mozilla and Seneca which out-
lasted that research project and led to the eventual de-
velopment of the Open Source teaching model described
here.

Seneca College’s DPS909/OSD600 Open Source De-
velopment course [19] implemented this model within
the Mozilla community. David subsequently devel-
oped the Real World Mozilla seminar, which packs

6



that course into an intensive one-week format, and the
DPS911/OSD700 continuation course was eventually
added to enable students to continue development on
their Open Source projects and take them to a fully-
polished 1.0 release with faculty support.

4.2 Failures

The unpredictable nature of working within a function-
ing Open Source community poses peculiar challenges.
We’ve had situations where a developer appears unex-
pectedly and posts a patch that fully completes a stu-
dent’s half-done project. Sometime students encounter
reviewers who can’t be bothered to do a review, stalling
a student’s work for weeks at a time, and some module
and package owners have a complete lack of interest in
the students’ work.

On the other hand, we’ve also had students drop the ball
on high-profile work, or fail to grasp how to leverage the
community and end up just annoying other contributors.
In both cases our relationship with the community has
taken a beating.

We’ve found that most students rise to the challenge pre-
sented to them in the Open Source development courses.
This has meant that, properly supported, students thrive
when presented with big challenges. Conversely, trying
to protect students by coddling them in terms of project
scope or expectations (“throwing them into the shallow
end of the pool”) almost certainly leads to failure.

4.3 Successes

By and large, the Open Source Development courses
have been successful for the majority of students. No-
table projects successes by Seneca students include:

• APNG [1] – Animated PNG format, an exten-
sion of the PNG [14] high-colour-depth, full-alpha
graphic format. While the PNG Development
Group favored the use of MNG as the animated
version of PNG, that standard had proven to be
large and difficult to implement effectively, and
Mozilla wanted to try a lightweight, backward-
compatible animated PNG format. Andrew Smith
implemented this format [2] and his work has been
incorporated into Firefox 3; Opera now also sup-
ports APNG.

• Buildbot integration – The Mozilla build system
was adapted to work with the BuildBot automation
system by Ben Hearsum [6].

• Plugin-Watcher – Many Firefox performance prob-
lems are believed to originate with 3rd-party bi-
nary plugins such as media players and document
viewers. Fima Kachinski (originally working with
Brandon Collins) implemented an API to moni-
tor plugin performance, and created a correspond-
ing extension to provide a visual display of plugin
load [13].

• DistCC on Windows – A distributed C compila-
tion tool originally written to work with GCC. Tom
Aratyn and Cesar Oliveira added support for Mi-
crosoft’s MSVC compiler, allowing multi-machine
builds in a Windows environment [5].

• Automated Localization Build Tool – There are
many localizations that deviate in a very minor
way from another localization (for example, en_US
and en_CA). Rueen Fiez, Vincent Lam, and Ar-
men Zambrano developed a Python-based tool that
will apply a template to an existing localization
to create the derivative version, which eliminates
the need for extensive maintenance on the deriva-
tive [3].

In addition, 4 out of 25 student interns at Mozilla this
summer are from our courses, and a number of gradu-
ates are now employed full-time by Mozilla and compa-
nies involved in Open Source as a result of their work.

The Open Source courses have also led to a number
of funded research projects in collaboration with Open
Source projects and companies.

4.4 What We’ve Learned

There are many lessons which students repeatedly take
away from the Open Source development courses:

• It’s important to persevere.

• It’s OK to share and to copy code (within the con-
text of the applicable Open Source licenses) in-
stead of guarding against plagiarizing or having
your code “stolen.”

7



• Work in public instead of in secret.

• Tell the world about your mistakes instead of pub-
licizing only your successes—there’s a lot of value
in knowing what does not work.

• You are a full community member, which makes
you a teacher as well as a student. Write down what
you’ve done, and it will become a resource. (It’s in-
teresting to note that many of the Google searches
which the students are performing now return our
own course wiki and blogs.)

• Ask for help instead of figuring things out on your
own.

• Key figures in this industry do not stand on
pedestals—they are real people and are approach-
able. Relationships are important and communica-
tion is critical.

• Code is alive.

We’ve also learned that Open Source is definitely not
for everyone. The least successful students are those
who do not engage the community and who attempt to
work strictly by themselves. However, even students
who don’t continue working with Open Source take an
understanding of Open Source into their career, along
with an understanding of how to work at scale—which
is applicable even in closed-source projects.

Finally, we’ve learned that Open Source communities
and companies have a huge appetite for people who
know how to work within the community.

4.5 Where We’re Headed

The OSD/DPS courses are growing and will continue to
work within the Mozilla project. In addition, we will
also be working with OpenOffice.org [12] this fall.

Our Linux system administration graduate program
(LUX [18]) is being revised to incorporate many of the
principles that we’ve used in the other Open Source
courses. LUX students will be working directly with
the Fedora project [7], but on a much larger scale than
the Mozilla and OpenOffice.org projects: LUX projects
will span three courses across two semesters.

One other course is in development: a build automation
course, scheduled to be introduced into our system ad-
ministration and networking programs in January 2009.
This course will also be based on work within the Fe-
dora project.

In order to effectively leverage our Open Source teach-
ing, research projects, and partnerships, we’ve created
the Seneca Centre for the Development of Open Tech-
nology (CDOT) [16] as an umbrella organization for this
work.

5 Steps an Open Source Community Can Take
to Improve Student Involvement

Most Open Source communities actively welcome new
contributors, but don’t always make it easy to join.
Many of the steps a project will take to encourage con-
tributors of any sort will improve student involvement:

• Make it easy for new contributors to set up your
build environment. Create an installable kit of
build dependencies, generate a metapackage, or
provide a single web page with links to all of the
required pieces.

• Create a central web page with links to basic infor-
mation about your project that a new contributor
will need, such as build instructions, communica-
tion systems, a list of module owners, a glossary or
lexicon of community-specific technical terms and
idioms, and diagrams of the software layers and
components used in your products. It’s challeng-
ing for new contributors to even map IRC nicks to
e-mail addresses and blog identities!

• Create sheltered places or processes to enable new
people to introduce themselves and get up to speed
before being exposed to the full flaming blow-
torch of the developer’s lists and channels. This
might include an e-mail list for new-contributor
self-introductions or a process for self-introduction
on the main lists, or an IRC channel for new devel-
opers.

In addition, in a course context:

• Ensure that the community is aware of the course
and course resources.

8



• Feel free to join the student IRC channel, con-
tribute to student projects as you would any other
project, and read the student planet.

• Contribute to learning materials on the course wiki.

• Apart from recognizing the students as new com-
munity members, treat them as any other contribu-
tor.

6 Conclusion

Open Source development is dramatically different from
other types of software development, and it requires
some radically different pedagogical approaches. A
community-immersed, fully-open, project-oriented ap-
proach led by professor who is also a member of the
Open Source community provides a solid foundation for
long-term, sustainable student involvement in that Open
Source community.

7 Acknowledgments

I would like to acknowledge the pioneering work of
my colleague David Humphrey in establishing the Open
Source Development courses at Seneca, and for his
thoughtful review of this paper.

References

[1] Animated PNG Information Site.
http://animatedpng.com/.

[2] APNG project page. http://zenit.
senecac.on.ca/wiki/index.php/APNG.

[3] Automated Localization Build Tool project page.
http://zenit.senecac.on.ca/wiki/
index.php/Automated_localization_
build_tool.

[4] Bugzilla Watch Lists.
http://www.bugzilla.org/docs/3.0/
html/userpreferences.html#
emailpreferences.

[5] DiscCC with MSVC project page.
http://zenit.senecac.on.ca/wiki/
index.php/Distcc_With_MSVC.

[6] Extending the Buildbot project page.
http://zenit.senecac.on.ca/wiki/
index.php/Extending_the_Buildbot.

[7] Fedora Project.
http://fedoraproject.org/.

[8] Fedorahosted Trac instances.
https://fedorahosted.org/web/.

[9] LXR. http://lxr.linux.no/.

[10] MXR. http://mxr.mozilla.org/.

[11] OpenGrok. http://opensolaris.org/
os/project/opengrok/.

[12] OpenOffice.org.
http://openoffice.org/.

[13] Plugin-watcher project page.
http://zenit.senecac.on.ca/wiki/
index.php/Plugin-watcher.

[14] PNG - Portable Network Graphics.
http://www.libpng.org/pub/png/.

[15] The Ryerson Facebook Dilemma.
http://www.wikinomics.com/blog/
index.php/2008/03/12/
the-ryerson-facebook-dilemma/.

[16] Seneca Centre for Development of Open
Technology (CDOT).
http://cdot.senecac.on.ca/.

[17] Seneca Free Software and Open Source
Symposium.
http://fsoss.senecac.on.ca/.

[18] Seneca LUX Graduate Program. http://cs.
senecac.on.ca/?page=LUX_Overview.

[19] Seneca Open Source Development Wiki.
http://zenit.senecac.on.ca/wiki/.

[20] Sourceforge. http://sourceforge.net/.

[21] John Flores. EZED - Easy Editor. http://
cdot.senecac.on.ca/software/ezed/.

[22] David Humphrey. VNC#. http://cdot.
senecac.on.ca/projects/vncsharp/.

9



[23] J. T. S. Moore. Revolution OS, 2001.
http://www.revolution-os.com/
(available online at http:
//video.google.com/videoplay?
docid=7707585592627775409).

[24] Eric Raymond. The Cathederal and the Bazaar,
2000. http://catb.org/~esr/
writings/cathedral-bazaar/
cathedral-bazaar/.

[25] Evan Weaver. NLED—Nifty Little Editor.
http://cdot.senecac.on.ca/
software/nled/.

10


