
®

IBM Software Group

© 2009 IBM Corporation

Concurrency in WTP
aka Multi-Threaded Issues in WTP

2009-02-26

IBM Software Group | Rational software

2

Agenda

 Why is this topic important?

 Correctness (Race conditions)

 Deadlock

IBM Software Group | Rational software

Why do we care about this topic?

 As the size of WTP based products increase and as our users adopt

more multi-core machines, WTP based products are hitting

concurrency problems more often

This leads to poor user satisfaction

Higher support costs

Higher development costs

 Concurrency problems are:

Devastating for our users. Recovery is often, kill the product.

Hard to debug

 Two main types of problems

Random failures (Race conditions)

Deadlocks (these are the easier ones!)

IBM Software Group | Rational software

Java Memory Model

 All modern computers have different levels of memory

 Registers

 L1 Cache

 L2 Cache

 L3 Cache

 Main memory

Speed Cost

IBM Software Group | Rational software

Which of these are Thread safe?

a) j = 5;

b) j ++;

c) If (a != null)a = new A();

d) None of the above

private int j;

private A a;

IBM Software Group | Rational software

Which of these are Thread safe?

a) j = 5;

b) j ++;

c) If (a != null)a = new A();

d)None of the above

IBM Software Group | Rational software

Synchronization

 Synchronization is about more than locking

 It is about multi-threaded visibility

 - In the absence of synchronization, the compiler, processor or

runtime can do downright weird things, with respect to visibility and

order of events.

 - “If multiple threads access some mutable state variables without

appropriate synchronization, your program is broken.” – Java

Concurrency in Practice

IBM Software Group | Rational software

Synchronization

Thread A

Thread B

Unlock

Lock

i = 5

j = i + 2

In this example i and j are instance variables.

int i;
int j;

IBM Software Group | Rational software

What to do? Use Immutable Objects

 1) Immutable objects are your

friends

 Never need to worry about

concurrency issues

 Final is also your friend

This is the number one best
technique for solving

concurrency problems!

IBM Software Group | Rational software

Use synchronization

IBM Software Group | Rational software

Use Synchronization

 It is not that expensive

While I measured a performance difference between using synchronized

code and unsynchronized code, the synchronized code was still very fast.

My test was to call the accessor 400 Million times. When synchronized it

took 8s (50 M requests/s) and unsynchronized it took .23 seconds (1.7 B

requests/second).

This was on a quad machine, where 4 threads where calling the accessor. I

was trying to generate lots of contention.

 But still, use when appropriate

IBM Software Group | Rational software

Use volatiles

 The Java Memory Model

 Volatile - write before subsequent reads

 Private volatile long _something;

IBM Software Group | Rational software

Use Atomics

 Atomics are like better volatiles (because they support some

compound operations like increment)

 Good to use when only a single variable is changing

IBM Software Group | Rational software

Use java.util.concurrent

 Java 5 added a number of concurrent classes

 They are very well implemented

 They are supported by the JVM and the JIT

 Use them

But only when needed. A concurrent collection (1,700 bytes) is much bigger

than a non concurrent collection (100 bytes). Avoid having a lot of small

concurrent collections.

IBM Software Group | Rational software

What is a Deadlock?

 Aka as a deadly embrace

Thread 1 wants a lock on A and B

Thread 2 wants a lock on B and A

 Thread 1 has a lock on A and is waiting for B

 Thread 2 has a lock on B and is waiting for A

 These threads will wait forever

 External Symptoms

The product appears hung, the UI threads may or may not be responding

Little or no CPU activity

Only solution is to kill the product

IBM Software Group | Rational software

Deadlocks

 Lots of things can trigger locks

Synchronized blocks

wait()

 ILock

Scheduling Rules

Jobs

 java.util.concurrent.locks

Workspace

Display

 The JVM only knows about some of these

IBM Software Group | Rational software

Deadlocks

 No magic here

 Locks need to be ordered

 If you always lock A then B then C you can’t hit a deadlock

 Use open calls to alien methods

An open call is one that doesn’t hold any locks

 If someone calls you and they are holding a lock (like a resource

change listener)

Be aware that you now have a lock

 If that is a problem, consider calling your unsafe code on another thread

 Document your locking

IBM Software Group | Rational software

Debugging a Deadlock

 You need to get the stack traces

Ctrl-Break on Windows (or SendSignal)

kill -QUIT <pid> on Linux

 Look at all the threads that have some “length” to them.

Look for threads that are blocked (B) or waiting (CW)

Usually the two to three longest threads are the cause of the deadlock

IBM Software Group | Rational software

Recap

 Use immutable objects

 Use the appropriate level of synchronization

Don’t leave ticking bombs

Don’t think just because you can’t reproduce the problem that there is no

problem

 Use the new java 5 concurrency support

 Only make Open calls

 Document your locking

 Further Reading

 “Java Concurrency in Practice” – Brian Goetz

